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Abstract In this paper, we first present a hierarchical
(BV,Gp,L2) variational decomposition model and then
use it to achieve multiscale texture extraction which of-
fers a hierarchical, separated representation of image tex-
ture in different scales. The starting point is the use of
the variational (BV,Gp,L2) decomposition; a given im-
age f ∈ L2(Ω) is decomposed into a sum of u0 + v0 + r0,
where (u0, v0) ∈ (BV(Ω),Gp(Ω)) is the minimizer of an
energy functional E(f,λ0;u,v) and r0 is the residual (i.e.
r0 = f − u0 − v0). In this decomposition, v0 represents the
fixed scale texture of f , which is measured by the parameter
λ0. To achieve a multiscale representation, we proceed to
capture essential textures of f which have been absorbed by
the residuals. Such a goal can be achieved by iterating a re-
finement decomposition to the residual of the previous step,
i.e. ri = ui+1 + vi+1 + ri+1, where (ui+1, vi+1) is the mini-
mizer of E(ri, λ0/2i+1;u,v). In this manner, we can obtain
a hierarchical representation of f . In addition, we discuss
some theoretical properties of the hierarchical (BV,Gp,L2)

decomposition and give its numerical implementation. Fi-
nally, we apply this hierarchical decomposition to the multi-
scale texture extraction. The performance of this method is
demonstrated with both synthetic and real images.
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1 Introduction

Texture is an important element in the computer vision and
has been analyzed by many researchers. A wide variety of
textures are carried out by a multitude of important applica-
tions such as remote sensing, medical diagnosis, document
analysis, target detection, and so on, still the analysis of tex-
tured images is widely recognized as a difficult and chal-
lenging problem which is demonstrated by the number of
different texture definitions attempted by vision researchers
[37, 40].

Texture is always a primary visual cue for pattern recog-
nition and relates to the visual perception of coarseness or
smoothness of image features. When it is defined in a quan-
titative sense, texture is a property that relates to the nature
of the variability of pixel values. A visually smoother tex-
ture would contain only slight changes in digital number
(DN) values over an area while a visually coarse texture
would contain many abrupt changes in DN values over an
area [17]. The texture model involves basic gray-level (or
color) texture primitives that form texture elements, called
textons [26] or texels [21], built from one or several prim-
itives. Several researchers have classified textures into two
large groups [37]: microtextures (primitives or texture ele-
ments) and macrotextures (the hierarchy of spatial arrange-
ments of those primitives).

In general, texture analysis includes the following three
major issues [32, 37]. The first is texture discrimination
based on image partitioning corresponding to different tex-
tures, the second is texture classification which categorizes
the texture into a finite number of defined classes, and the
last is shape extraction from texture, usually reconstruction
of 3D-surface geometry from texture information. Of all
these areas of texture analysis, texture extraction may be the
most important preliminary work. Texture extraction is to
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detect the texture primitives or elements from textured im-
age by some image processing techniques. It is the founda-
tion of successful texture analysis and processing, for the
extracted textures directly affect the quality of the follow-up
processes.

Due to the importance of texture extraction in the area
of texture analysis, many different texture extracting meth-
ods have been developed, which can be categorized into
four major classes [29, 37], characterized as the statistical,
structural, model-based and frequency-based. Statistical ap-
proaches are based on gray-level distribution of texture el-
ement. The simplest method is to describe texture by using
the moment of gray-level histogram which can be demon-
strated as a texture measure. However, this method does not
take into account the spatial information of pixels. Some
improved works has been done by calculating the variety
of different pixel relationships. By far the most prevalent
technique used for deriving texture measures is the use of
the gray-level co-occurrence matrix (GLCM) [21, 22]. This
technique uses a spatial co-occurrence matrix that computes
the relationships of pixel values and then uses these values
to compute some statistical properties from these matrices,
such as contrast, energy, entropy and correlation coefficient
etc.

Structural approaches are based on the theory that tex-
tures are composed of regular and repeating elements called
primitives, and then texture extraction is identified as a pro-
cess of determining these primitives and quantitatively an-
alyzing the rules of their arrangement. For example, Hay
and Niemann presented a structural method for analyzing
texture from forested scenes [23]. Tuceryan and Jain used
the Voronoi tessellation features to texture analysis [50].
But structural method is limited because it requires large
amounts of information to characterize texture adequately.

Model-based approaches attempt to find stochastic pro-
cesses that are able to model texture, such as Markov ran-
dom fields [11, 20], fractal features [16, 39, 44], autoregres-
sive model [1] and multi-resolution simultaneous autore-
gressive model [31]. These techniques have a common fea-
ture that they can describe texture by using small amounts of
parameters and have succeed in analyzing microtextures, but
they are not very useful for macrotextures situations where
little is known about the texture, or more than one texture
exists.

Frequency-based approach is called signal processing
method, which relies on the information derived from local
operators and statistical attributes of images in the frequency
domain, such as Fourier power spectrum method [2], Gabor
filters [9, 18, 25], Pyramid wavelet transform [30, 35], Tree
wavelet transform [33, 35], Wigner distribution [24, 42] and
discrete cosine transform (DCT) [3].

It has been argued that a human visualizes a scene in
multiple scales [19, 28, 41]. Then multiscale approaches

are appropriate for texture extraction because a single scale
may be not a perfect simulation of the human visual percep-
tion (HVP) to texture elements. In order to achieve reliable
texture information in different scales, both the large-scale
and small-scale behaviors should be investigated and incor-
porated appropriately. Thus, a natural way to address this
problem is the multiscale analysis. Frequency-based meth-
ods, trying to characterize texture through filter responses
directly, such as Gabor filter [9, 18, 25] and wavelet trans-
form [30, 33, 35] can produce a good multiscale texture ex-
traction. These two multiscale techniques transforming im-
ages into a hierarchical representation can achieve a good
simulation of the HVP.

Recently, an image decomposition method based on vari-
ational theory has received more and more attention and has
been studied by many researchers (e.g., [4, 6–8, 10, 14, 15,
27, 34, 38, 46–49]). It can achieve the decomposition of a
given image by minimizing an energy functional and may
be quite effective for texture extraction, since the given im-
age f is decomposed in to u + v or u + v + r , in which v

exactly represents texture component of f . However, more
of the known variational decomposition models can only be
used as the fixed scale texture extraction, since they adopt
the fixed scale parameter to measure texture. Tadmor et
al. have proposed the hierarchical (BV,L2) decomposition
[48, 49] and hierarchical (BV,L1) decomposition [8, 47],
but they are not the best for the multiscale texture extraction
because neither L2(Ω) nor L1(Ω) is suitable function space
to model oscillatory patterns [34].

In this paper, we focus on multiscale texture extraction
based on variational image decomposition. To accomplish
this, we first propose a hierarchical (BV,Gp,L2) varia-
tional decomposition model, and then we use it to achieve
a multiscale texture extraction. We here adopt (BV,Gp,L2)

decomposition because Gp(Ω) is a very suitable function
space to model oscillatory patterns [51, 52]; in addition, the
Gp-norm is easier to solve in practice. Unlike the origi-
nal fixed scale (BV,Gp,L2) variational decomposition, in
our hierarchical decomposition, the scale parameter used to
measure the texture is not a fixed threshold, but varies over a
sequence of bipartite scales. So, this hierarchical decompo-
sition enables us to successively capture the oscillation of f

which lies in the intermediate scale spaces between L2(Ω)

and Gp(Ω). Then, the extracted texture of f is not predeter-
mined but resolved in terms of layers of intermediate scales.

The rest of this paper is organized as follows. Sec-
tion 2 introduces some backgrounds that are much related
to the present paper. Section 3 presents the hierarchical
(BV,Gp,L2) decomposition. Section 4 shows some prop-
erties of this hierarchical decomposition. The numerical im-
plementation for the hierarchical decomposition is given in
Sect. 5. In Sect. 6, we apply the hierarchical decomposition
to achieve a multiscale texture extraction. This paper is sum-
marized in Sect. 7.
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2 Backgrounds

2.1 Some Function Spaces and Known Results

The use of different function spaces is a common tool in
image processing, especially in image decomposition. Here
we recall the definition of some function spaces which are
much relative to our present work.

Definition 1 Let Ω ⊂ R
2 be an open subset with Lipschitz

boundary, then BV(Ω) is a subspace of L1(Ω) such that the
following quantity, called the BV-seminorm or total varia-
tion (TV), is finite.

|u|BV(Ω) = sup

{∫
Ω

udiv( �ϕ)dx | �ϕ ∈ C1
c

(
Ω,R

2),

‖�ϕ‖L∞(Ω) ≤ 1

}
.

Further, ‖u‖BV(Ω) = ‖u‖L1(Ω) + |u|BV(Ω) is called the BV-
norm.

The function space BV(Ω) plays a key role in the Rudin-
Osher-Fatemi (ROF) model [43] (i.e., (BV,L2) decomposi-
tion). Meyer [34] has investigated this model and dissatisfied
with the results, then he introduced a space G(Ω) to model
oscillatory patterns. This space happens to be very close to
the dual space of BV(Ω). In such a space, oscillatory func-
tions have a small norm, which is a useful property to cap-
ture the texture in the energy minimization process. Here we
recall the definition of G(Ω).

Definition 2 G(Ω) consists of all the distributions which
can be written as

v = ∂xg1 + ∂yg2 = div(�g), �g ∈ L∞(Ω,R
2).

G(Ω) can be endowed with the norm

‖v‖G(Ω) = inf
{‖�g‖L∞(Ω)|v = div(�g), �g ∈ L∞(

Ω,R
2)},

here, ‖�g‖L∞(Ω) = ess sup
√

g2
1 + g2

2 .

The main properties of G(Ω) are given below.

Lemma 1 [34] Let u ∈ W
1,1
0 (Ω) ⊂ BV(Ω) and v ∈ G(Ω).

Then
∫

Ω

uvdx ≤ ‖v‖G(Ω)

∫
Ω

|∇u|dx,

where ∇u is the weak derivation of u. As a consequence of
this lemma we have the following corollary.

Corollary 1 For any u ∈ W
1,1
0 (Ω) ⊂ BV(Ω) and v ∈

G(Ω), we have∫
Ω

|∇u|dx = sup

{∫
Ω

uvdx;v ∈ G(Ω),‖v‖G(Ω) ≤ 1

}
,

‖v‖G(Ω) = sup

{∫
Ω

uvdx;u ∈ W
1,1
0 (Ω),

∫
Ω

|∇u|dx ≤ 1

}
.

From this corollary, we can obtain that G(Ω) is actually
the dual space W−1,∞(Ω) (equipped with dual space) of
the normed space W

1,1
0 (Ω) equipped with norm ‖u‖

W
1,1
0

=∫
Ω

|∇u|dx, which is identical with the result in [27]. The
next result of this corollary explains why the function space
G(Ω) is a very good one to model oscillatory patterns.

Due to the nature of G-norm, it is quite difficult to com-
pute in practice. To address this problem, G(Ω) is replaced
by another larger function space Gp(Ω) with 1 ≤ p < ∞
for oscillatory patterns in [51, 52]. Gp(Ω) is defined as the
following.

Definition 3 Gp(Ω) consists of all the distributions which
can be written as

v = ∂xg1 + ∂yg2 = div(�g), �g ∈ Lp
(
Ω,R

2).
Gp(Ω) can be endowed with the norm

‖v‖Gp(Ω) = inf
{‖�g‖Lp(Ω) | v = div(�g), �g ∈ Lp

(
Ω,R

2)}.
The oscillatory functions have small Gp-norm too, and

such a norm may be easier to compute than the G-norm in
practice. Moreover, if p → ∞,Gp(Ω) approximate G(Ω).
Similarly, the function space Gp(Ω) is exactly the dual

space W−1,p(Ω) of the normed space W
1,q

0 (Ω) equipped
with norm ‖u‖

W
1,q
0

= (
∫
Ω

|∇u|qdx)1/q with 1/p+1/q = 1.

Remark 1 Since G(Ω) is exactly the dual space W−1,∞(Ω)

of W
1,1
0 (Ω), and Gp(Ω) is the dual space W−1,p(Ω) (1 ≤

p < ∞) of W
1,q

0 (Ω), by the Sobolev imbedding theorems,
we have ‖v‖Gp(Ω) ≤ CΩ‖v‖G(Ω) where CΩ is a constant
which is independent of v but Ω .

Example Let m > 0, x ∈ Ω = [0,π/2], v(x) = cos(mx)

and g(x) = 1
m

sin(mx) + c, then v = g′. We have the fol-
lowing:

(1) ‖v‖G(Ω) = 1
m

. Note that ‖v‖G(Ω) → 0 as m → ∞.
(2) Without loss of generality, assume m > 1, we have

‖v‖Gp(Ω) =
(∫ π

2

0

∣∣g(x)
∣∣pdx

)1/p

=
(

1

mp

∫ π
2

0

∣∣sin(mx)
∣∣pdx

)1/p

=
(

1

mp+1

∫ mπ
2

0
|sin t |pdt

)1/p

≤
(

π

2

)1/p 1

m
.

And note that ‖v‖Gp(Ω) → 0 as m → ∞.
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This simple example shows that an oscillatory function
has small G-norm as well as small Gp-norm, both which
approach to zero as the frequency of oscillations increases.
In addition, the Gp-norm is weaker than the G-norm. So
using Gp-norm to measure oscillatory function, we also can
exactly capture the texture during the energy minimization
process.

2.2 The (BV,Gp,L2) Decomposition

A grayscale image can be represented by a L2-function,
f : (x, y) ∈ Ω → R, where Ω is an open, bounded and con-
nected subset of R

2, typically a rectangle or a square [5, 13,
45]. We focus on the decomposition of f into three com-
ponents, i.e. f = u + v + r where u represents piecewise
smooth (cartoon or structure) component of f, v represents
the oscillatory component of f , which is just what we need
(i.e. texture), and r represents residual. Here are two clas-
sical examples of image decomposition by variational ap-
proaches which are rather related to our present work.

A celebrated variational decomposition is the (BV,G)

decomposition model proposed by Meyer in [34], which is
achieved by solving the following variational problem:

inf
u,v

{|u|BV(Ω) + λ‖v‖G(Ω), f = u + v
}
. (1)

The (BV,G) decomposition is a better model to extract
texture in theory, because it uses a suitable function space
G(Ω) to describe the oscillatory function, i.e., the oscilla-
tory functions have small G-norm. However, it cannot be
directly solved in practice due to the nature of the G-norm
[4, 6, 7, 51, 52], there is no standard calculation of the asso-
ciated Euler-Lagrange equation for (1).

Vese and Osher [51, 52] were the first to overcome this
difficulty by replacing the space G(Ω) with Gp(Ω) (1 ≤
p < ∞). And then the (BV,G) decomposition model (1) is
approximated by the following minimization problem:

inf
u,v

{
E(f,λ;u,v) = |u|BV(Ω) + μ‖f − u − v‖2

L2(Ω)

+ λ‖v‖Gp(Ω)

}
, (2)

where μ,λ > 0 are tuning parameter; in addition, parameter
λ can be seen as a scale factor to measure the extracted tex-
ture. The first term of E(f,λ;u,v) insures that u ∈ BV(Ω),
the second term gives us f ≈ u + v, while the third term
is a penalty on the norm in Gp(Ω) of v. By solving (2),
we obtain a decomposition of f,f = u + v + r such that
u ∈ BV(Ω), v ∈ Gp(Ω) and r ∈ L2(Ω). We here call it
(BV,Gp,L2) decomposition.

Then we would like to list some other related works on
numerically solving (BV,G) decomposition. Osher, Solé,
and Vese [38] proposed a simplified approximated method

by replacing G(Ω) with H−1(Ω), the dual space of H 1
0 (Ω).

Le and Vese [27] introduced the Dirac function in (2) to
compute the G1-norm of v. Aujol, Aubert, Blanc-Féraud
and Chambolle [6, 7] defined a convex closed subset of
G(Ω) and then the oscillation component was modeled as
the orthogonal projection on this subset. Weiss, Aubert and
Blanc-Féraud [53] proposed an efficient algorithm based on
Nesterov scheme [36] for TV minimization, which was used
to solve (BV,G) model.

In what follows, to simplify the notations, we always
write BV,Gp and L2 instead of BV(Ω),Gp(Ω) and L2(Ω),
respectively.

3 Hierarchical (BV,Gp,L2) Decomposition

In the original (BV,Gp,L2) decomposition model (2), the
parameter λ can be seen as a scale factor used to measure
the extracted texture. If the value of λ is initially chosen to
be very large such that, then only the smaller scale texture
(coarser texture) can be extracted, and the larger scale tex-
ture (smoother texture) is swept into residual component.
If λ is too small, however, all the textures are extracted in-
discriminately, regardless of their distinct scales. Figure 1
shows the comparison of the decomposition results of model
(2) taking different values of λ.

In our present study, to achieve a multiscale texture ex-
traction, we propose a hierarchical (BV,Gp,L2) decompo-

sition which simulates hierarchical (BV,L2) decomposition
proposed by Tadmor, Nezzar and Vese [48]. The scale pa-
rameter λ in (2) is not a fixed threshold but varies over a
sequence. We start with a larger value of the initial scale
parameter λ, and then gradually capture the missing larger
scale texture by deceasing the value of λ. The detail is as
follows.

For a given scale λ, the minimizer of E(f,λ;u,v) is in-
terpreted as a decomposition, f = uλ +vλ + rλ, such that vλ

captures textures in the scale 1/λ, while the textures above
1/λ remain unresolved in rλ, i.e., rλ consists of significant
textures when viewed under a larger scale than 1/λ, say 2/λ:

rλ = uλ/2 + vλ/2 + rλ/2,

(uλ/2, vλ/2) = arg infE(rλ,λ/2;u,v). (3)

We now have a better two-scale representation of texture
given by vλ + vλ/2. Similarly, textures above scale 2/λ re-
mains unresolved in rλ/2. Then, the process in (3) can be
continued to capture larger scale textures. Starting with an
initial scale λ = λ0, we obtain

f = u0 + v0 + r0,

here,
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Fig. 1 Here f is a given image.
uλ, vλ and rλ are structure,
texture and residual component
of f , respectively. The first row
shows the decomposition
f = u2 + v2 + r2 obtained by
(2) with λ = 2. The second row
shows the decomposition
f = u0.5 + v0.5 + r0.5 obtained
by (2) with λ = 0.5. The last
row shows the decomposition
obtained by (2) with λ = 0.05.
In all decompositions, we take
μ = 0.005

(u0, v0) = arg inf
{
E(f,λ0;u,v)

= |u|BV + μ‖f − u − v‖2
L2

+ λ0‖v‖Gp

}
.

We proceed with successive application of a refinement step
(3), it realizes as following,

ri = ui+1 + vi+1 + ri+1, i = 0,1,2, . . . ,

here,

(ui+1, vi+1) = arg inf
{
E(ri, λ0/2i+1;u,v)

= |u|BV + μ‖ri − u − v‖2
L2

+ λ0/2i+1‖v‖Gp

}
.

After k such steps, we can obtain the following hierarchical
decomposition of f :

f = u0 + v0 + r0

= u0 + u1 + v0 + v1 + r1

= · · ·
= u0 + u1 + · · · + uk + v0 + v1 + · · · + vk + rk. (4)

4 Some Properties of the Hierarchical (BV,Gp,L2)

Decomposition

We recall that the hierarchical decomposition of a given im-
age f ∈ L2 is achieved successively by solving the follow-
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ing variational problem:

inf
u,v

{
E

(
ri , λ0/2i+1;u,v

)

= J (u) + μ‖ri − u − v‖2
L2 + λ0/2i+1L(v)

}
,

(i = −1,0,1, . . .), (5)

where J (u) = |u|BV and L(v) = ‖v‖Gp are two convex
functions. We note here that ri is the residual component
of the (i + 1)th step decomposition and r−1 is interpreted
as f , i.e., r−1 = f . A natural way to solve the minimiza-
tion problem (5) is to solve successively the following two
coupled problems:

• Fixed v, find the solution u of

inf
u∈BV

{
J (u) + μ‖ri − u − v‖2

L2

}
. (6)

• Fixed u, find the solution v of

inf
v∈Gp

{
μ‖ri − u − v‖2

L2 + λ0/2i+1L(v)
}
. (7)

Clearly, the problem (5) and the coupled problems (6)–(7)
have the same solutions. In what follows, we will give some
characteristics of their solutions.

Firstly, similar to (but slightly different from) Defini-
tion 5.3 of [27], we define a new quantity ‖ · ‖∗,i to measure
the L2-function, which will play key role in our following
study.

Definition 4 Given a function ω ∈ L2 and an integral num-
ber i, define

‖ω‖∗,i = sup
h∈BV,g∈Gp

〈ω,h + g〉
|h|BV + λ0/2i+1‖g‖Gp

,

|h|BV + λ0/2i+1‖g‖Gp �= 0,

where 〈·, ·〉 denotes L2 inner product.

Remark 2 If ‖ω‖∗,i < ∞, then
∫
Ω

ωdx = 0; otherwise, we
can replace h by h + c with c ∈ R, and then ‖ω‖∗,i = ∞ as
|c| → ∞.

Proposition 1 Let (ui+1, vi+1) be a solution of (5) and set
ri+1 = ri − ui+1 − vi+1, then we have the following:

(1) If ui+1 = 0, vi+1 = 0, then ‖ri‖∗,i ≤ 1
2μ

.

(2) If ‖ri‖∗,i > 1
2μ

, then ui+1 �= 0 or vi+1 �= 0. In addition,
ui+1, vi+1 and ri+1 satisfy

‖ri+1‖∗,i = 1

2μ
and

〈ri+1, ui+1 + vi+1〉 (8)

= 1

2μ

(|ui+1|BV + λ0/2i+1‖vi+1‖Gp

)
.

Proof For the first assertion, the model (5) yields ui+1 =
0, vi+1 = 0 being the minimizer if and only if for any h ∈ BV
and g ∈ Gp ,

|h|BV + μ‖ri − h − g‖2
L2 + λ0/2i+1‖g‖Gp ≥ μ‖ri‖2

L2 . (9)

Expanding the second term of the left side of (9), we obtain

|h|BV +μ‖h+g‖2
L2 +λ0/2i+1‖g‖Gp ≥ 2μ〈ri, h+g〉. (10)

By substituting in (10) h with εh and g with εg, and taking
ε → 0+, we have

〈ri , h + g〉 ≤ 1

2μ

(|h|BV + λ0/2i+1‖g‖Gp

)
.

By the definition of ‖ · ‖∗,i , we have ‖ri‖∗,i ≤ 1
2μ

.
For the second assertion, from the first assertion of this

proposition, we can deduce directly that if ‖ri‖∗,i > 1
2μ

, then
ui+1 �= 0 or vi+1 �= 0.

Since ui+1 ∈ BV and vi+1 ∈ Gp is the solution of (5), for
any h ∈ BV, g ∈ Gp and ε ∈ R, we have

E
(
ri , λ0/2i+1;ui+1 + εh, vi+1 + εg

)
≥ E

(
ri , λ0/2i+1;ui+1, vi+1

)

which implies

|ui+1 + εh|BV + μ
∥∥ri+1 − ε(h + g)

∥∥2
L2

+ λ0/2i+1‖vi+1 + εg‖Gp

≥ |ui+1|BV + μ‖ri+1‖2
L2 + λ0/2i+1‖vi+1‖Gp . (11)

By the triangle inequality,

‖vi+1‖Gp + |ε|‖ri+1‖Gp ≥ ‖vi+1 + εri+1‖Gp and

|ui+1 + εh|BV ≥ |ui+1|BV + |ε‖h|BV

equation (11) can be rewritten as

|ε‖h|BV + μ
∥∥ri+1 − ε(h + g)

∥∥2
L2 + λ0/2i+1|ε‖g‖Gp

≥ μ‖ri+1‖2
L2 .

Expanding the last inequality, we obtain

|ε‖h|BV + με2
∥∥(h + g)

∥∥2
L2 + λ0/2i+1|ε|‖g‖Gp

≥ 2εμ〈ri+1, h + g〉.

Dividing both side of the last equation by ε > 0, and taking
ε → 0+, we obtain

|h|BV + λ0/2i+1‖g‖Gp ≥ 2μ〈ri+1, h + g〉.
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Therefore, by the definition of ‖ · ‖∗,i and the arbitrariness
of h and g, we have

‖ri+1‖∗,i ≤ 1

2μ
. (12)

If we take ε ∈ (−1,1), and replace (h, g) with
(ui+1, vi+1) in (11), we have

(1 + ε)|ui+1|BV + μ
∥∥ri+1 − ε(ui+1 + vi+1)

∥∥2
L2

+ λ0/2i+1(1 + ε)‖vi+1‖Gp

≥ |ui+1|BV + μ‖ri+1‖2
L2 + λ0/2i+1‖vi+1‖Gp

which implies

ε|ui+1|BV + μ
∥∥ri+1 − ε(ui+1 + vi+1)

∥∥2
L2

+ λ0/2i+1ε‖vi+1‖Gp ≥ μ‖ri+1‖2
L2 .

By expanding the second term of right side of the last in-
equality, we have

ε|ui+1|BV + ε2μ‖ui+1 + vi+1‖2
L2 + ελ0/2i+1‖vi+1‖Gp

≥ 2εμ〈ri+1, ui+1 + vi+1〉. (13)

If ε > 0, dividing both side of (13) by ε and then taking
ε → 0+, we obtain

|ui+1|BV + λ0/2i+1‖vi+1‖Gp

≥ 2μ〈ri+1, ui+1 + vi+1〉. (14)

If ε < 0, similarly, we obtain

|ui+1|BV + λ0/2i+1‖vi+1‖Gp

≤ 2μ〈ri+1, ui+1 + vi+1〉. (15)

Therefore, from (14) and (15), we have desired result

〈ri+1, ui+1 + vi+1〉 = 1

2μ

(|ui+1|BV + λ0/2i+1‖vi+1‖Gp

)
.

Because ui+1 �= 0 or vi+1 �= 0, the last equality can be
rewritten as

〈ri+1, ui+1 + vi+1〉
|ui+1|BV + λ0/2i+1‖vi+1‖Gp

= 1

2μ
. (16)

Combining (12) with (16), we have

‖ri+1‖∗,i = 〈ri+1, ui+1 + vi+1〉
|ui+1|BV + λ0/2i+1‖vi+1‖Gp

= 1

2μ
. �

Proposition 1 shows the characteristics of the solution
of (5). We refer the reader to Meyer [34] for a similar one
to the classical ROF decomposition [43] with the fixed pa-
rameter. From this proposition, we have the following result

of the nontrivial property of our hierarchical decomposition
given in (4).

Proposition 2 If
∫
Ω

f dx �= 0, then the hierarchical decom-
position given in (4) is nontrivial, i.e., ui �= 0 or vi �= 0 for
any i = 0,1, . . . .

Proof Because of
∫
Ω

f dx �= 0, we have ‖f ‖∗,−1 =
‖r−1‖∗,−1 > 1

2μ
by Remark 2, which implies that the first

step decomposition satisfies u0 �= 0 or v0 �= 0 by Proposi-
tion 1. In addition,

‖r0‖∗,−1 = 〈r0, u0 + v0〉
|u0|BV + λ0‖v0‖Gp

= 1

2μ
and

‖r0‖∗,0 = sup
h∈BV,g∈Gp

〈r0, h + g〉
|h|BV + λ0/2‖g‖Gp

,

which mean that the residual r0, which will be the input data
of the second step decomposition, satisfies

‖r0‖∗,0 > ‖r0‖∗,−1 = 1

2μ
.

Again by Proposition 1, it follows that u1 �= 0 or v1 �= 0,
and ‖r1‖∗,1 > ‖r1‖∗,0 = 1

2μ
which implies that the nontrivial

decomposition can be continued.
Similarly, for the (i + 1)th step decomposition, the

residual ri−1 of the previous step satisfies ‖ri−1‖∗,i−1 >

‖ri−1‖∗,i−2 = 1
2μ

. So, by Proposition 1, we have ui �= 0 or
vi �= 0. �

From Proposition 2, we can conclude that if the initial
image f satisfies

∫
Ω

f dx �= 0, then the hierarchical decom-
position satisfies ui �= 0 or vi �= 0 for any i = 0,1, . . . . In
other word, if the first step decomposition is nontrivial, then
the successive hierarchical decomposition is also nontrivial.

Next, we give the characteristics of the solutions of the
coupled problems (6)–(7).

Lemma 2 Let (ui+1, vi+1) be a solution of the coupled
problems (6)–(7), then ri+1 = ri − ui+1 − vi+1 is a solution
of the following minimization problem:

inf
r

‖ri − vi+1 − r‖2
L2 subject to ‖r‖G ≤ 1

2μ
.

Proof Let v = vi+1 in (6), then ui+1 is a solution of (6) if
and only if

0 ∈ ∂J (ui+1) + 2μ(ui+1 + vi+1 − ri),

i.e.,

2μ(ri − ui+1 − vi+1) ∈ ∂J (ui+1), (17)
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where ∂J (ui+1) is the subdifferential of J at the point
ui+1;ω ∈ ∂J (ui+1) if and only if J (u)−J (ui+1) ≥ 〈ω,u−
ui+1〉 for every u ∈ BV . Euler-Lagrange equation (17) can
be rewritten as

ui+1 ∈ ∂J ∗(2μ(ri − ui+1 − vi+1)
)
, (18)

where J ∗ is the Legendre-Fenchel transform of J . Since
J (u) = |u|BV is one homogeneous (i.e., J (λu) = λJ (u) for
any u ∈ BV and λ > 0), it is well known that J ∗ is the in-
dicator function of a closed convex set K ′ = {v|‖v‖G ≤ 1},
where J ∗ is defined as

J ∗(v) = sup
u

{〈v,u〉 − J (u)
} = χK ′(v)

=
{

0 if v ∈ K ′,
+∞ otherwise.

(19)

Equation (18) can be rewritten as

0 ∈ ri −ui+1 −vi+1 −ri +vi+1 +∂J ∗(2μ(ri −ui+1 −vi+1)
)
,

which precisely means that ri+1 = ri − ui+1 − vi+1 is a so-
lution of

inf
r

{
1

2
‖ri − vi+1 − r‖2

L2 + 1

2μ
J ∗(2μr)

}
.

By the definition of J ∗ given by (19), ri+1 is a solution of

inf‖r‖G≤1/(2μ)
‖ri − vi+1 − r‖2

L2 . (20)

We thus obtain the desired result. �

Remark 3 Minimization problem (20) is actually a dual
form of problem (6). By using the Euclidean projection al-
gorithm proposed by Chambolle in [12], the solution of (20)
can be written as ri+1 = PK ′

μ
(ri − vi+1) which is just the

orthogonal projection on the closed set K ′
μ, where K ′

μ =
{r|‖r‖G ≤ 1/(2μ)}.

By Lemma 2, we have the following result.

Proposition 3 Let (ui+1, vi+1) be a solution of the coupled
problems (6)–(7), then ui+1, vi+1 and ri+1 satisfy the fol-
lowing:

(1) If ‖ri −vi+1‖G ≤ 1
2μ

, then ‖ri+1‖G ≤ 1
2μ

and ui+1 = 0.

(2) If ‖ri −vi+1‖G > 1
2μ

, then ‖ri+1‖G = 1
2μ

and ui+1 �= 0.

Proof For the first assertion, because of ‖ri − vi+1‖G ≤ 1
2μ

,
we can deduce that ri − vi+1 ∈ K ′

μ, and then ri − vi+1 =
PK ′

μ
(ri − vi+1). By Remark 3, ri+1 = PK ′

μ
(ri − vi+1). We

thus have ri+1 = ri −vi+1 which implies that ‖ri+1‖G ≤ 1
2μ

and ui+1 = ri − vi+1 − ri+1 = 0.

For the second assertion, because of ‖ri − vi+1‖G > 1
2μ

and ri+1 = PK ′
μ
(ri −vi+1), on the basis of convex optimiza-

tion theory, we have ‖ri+1‖G = 1
2μ

. Using the triangle in-
equality, we have

‖ri − vi+1 − ri+1‖G ≥ ‖ri − vi+1‖G − ‖ri+1‖G > 0,

which means that ui+1 = ri − vi+1 − ri+1 �= 0. �

Next, we show another characteristic of the solution of
the coupled problems (6)–(7) which is much related to tex-
ture extraction. We first need the following lemma.

Lemma 3 Let (ui+1, vi+1) be a solution of the problems
(6)–(7). Then ri+1 = ri − ui+1 − vi+1 is a solution of the
following minimization problem:

inf
r

‖ri − ui+1 − r‖2
L2 subject to ‖∇r‖Lq ≤ λ0

2i+2μ
,

where

‖∇r‖Lq =
(∫

Ω

|∇r|q
)1/q

and

|∇r| =
√

(∂xr)2 + (∂yr)2.

Proof Fixed u = ui+1 in (7), we obtain that vi+1 is a solu-
tion of (7) if and only if

0 ∈ 2μ(ui+1 + vi+1 − ri) + λ0/2i+1∂L(vi+1),

i.e.,

2i+2μ

λ0
(ri − ui+1 − vi+1) ∈ ∂L(vi+1), (21)

where ∂L(vi+1) is subdifferential of L at vi+1. Euler-
Lagrange equation (21) can be rewritten as

vi+1 ∈ ∂L∗
(

2i+2μ

λ0
(ri − ui+1 − vi+1)

)
, (22)

where L∗ is the Legendre-Fenchel transform of L, given by

L∗(u) = χK ′′(u) =
{

0 if u ∈ K ′′,
+∞ otherwise

(23)

with K ′′ = {u | ‖∇u‖Lq ≤ 1}.
Equation (22) can be rewritten as

0 ∈ ri − ui+1 − vi+1 − ri + ui+1

+ ∂L∗
(

2i+2μ

λ0
(ri − ui+1 − vi+1)

)
,
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which implies that ri+1 = ri − ui+1 − vi+1 is a solution of

inf
r

{
1

2
‖ri − ui+1 − r‖2

L2 + λ0

2i+2μ
L∗

(
2i+2μ

λ0
r

)}
.

By the definition of L∗ given in (23), ri+1 is a solution of
the following problem

inf
r

‖ri − ui+1 − r‖2
L2 subject to ‖∇r‖Lq ≤ λ0

2i+2μ
. (24)

We thus obtain the desired result. �

Remark 4 Similar to Remark 3, the minimization problem
(24) is a dual form of problem (7) and the solution of (24)
can be written as ri+1 = PK ′′

λ
(ri −ui+1), the orthogonal pro-

jection on the closed set K ′′
λ = {r|‖∇r‖Lq ≤ λ0/(2i+2μ)}.

By Lemma 3, we have the following result.

Proposition 4 Let (ui+1, vi+1) be a solution of the coupled
problems (6)–(7), then ui+1, vi+1 and ri+1 satisfy the fol-
lowing:

(1) If ‖∇(ri − ui+1)‖Lq ≤ λ0
2i+2μ

, then ‖∇ri+1‖Lq ≤ λ0
2i+2μ

and vi+1 = 0.
(2) If ‖∇(ri − ui+1)‖Lq >

λ0
2i+2μ

, then ‖∇ri+1‖Lq = λ0
2i+2μ

and vi+1 �= 0.

Proof These two assertions can be verified by the similar
methods to the ones for Proposition 3. �

This proposition gives the conditions, under which tex-
ture can/cannot be effectively extracted by the hierarchi-
cal decomposition. Besides, it shows that the Lq -norm of
|∇ri+1| is decreasing with respect to i, which indicates that
the residual component ri+1 contains less and less image in-
formation with the increase of the value of i. Further, we
have the following convergence of the residual component.

Proposition 5 Let (ui+1, vi+1) be a solution of (6)–(7), and
ri+1 = ri − ui+1 − vi+1. Then ri+1 → C as i → ∞, where
C is a constant.

Proof By Proposition 4, in each case, we have

‖∇ri+1‖Lq =
(∫

Ω

|∇ri+1|q
)1/q

≤ λ0

2i+2μ
→ 0

as i → ∞. (25)

Because of |∇ri+1| =
√

(∂xri+1)2 + (∂yri+1)2 ≥ 0, from
(25) we can deduce that |∇ri+1| → 0 as i → ∞, which im-
plies that ri+1 → C as i → ∞. �

At last, similar to the convergence result of hierarchi-
cal (BV,L2) decomposition proposed by Tadmor, Nezzar
and Vese [48], we show the convergence of our hierarchical
(BV,Gp,L2) decomposition given by (4) in L2 topology.

Proposition 6 Let f ∈ L2. Then the hierarchical decompo-
sition given by (4) satisfies

∥∥∥∥∥f −
k∑

i=−1

(ui+1 +vi+1)

∥∥∥∥∥
L2

= ‖rk+1‖L2 → 0, as k → ∞.

In addition, the following energy decomposition of f holds:

‖f ‖2
L2 =

∞∑
i=−1

‖ui+1 + vi+1‖2
L2

+ 1

μ

∞∑
i=−1

(|ui+1|BV + λ0/2i+1‖vi+1‖Gp

)
.

Proof For the first assertion, since ui+1 ∈ BV and
vi+1 ∈ Gp is a solution of the variational problem (5), for
any ε ∈ R, we have

E
(
ri , λ0/2i+1;ui+1, vi+1 + εri+1

)
≥ E

(
ri , λ0/2i+1;ui+1, vi+1

)
,

which implies

|ui+1|BV + μ‖ri+1 − εri+1‖2
L2 + λ0/2i+1‖vi+1 + εri+1‖Gp

≥ |ui+1|BV + μ‖ri+1‖2
L2 + λ0/2i+1‖vi+1‖Gp .

By the triangle inequality, it follows that

μ‖ri+1 − εri+1‖2
L2 + λ0/2i+1|ε|‖ri+1‖Gp ≥ μ‖ri+1‖2

L2 .

(26)

By expanding the first term of (26), we have

με2‖ri+1‖2
L2 + λ0/2i+1|ε|‖ri+1‖Gp ≥ 2με‖ri+1‖2

L2 .

Dividing both sides of the last inequality by ε > 0 and taking
ε → 0+, we have

‖ri+1‖2
L2 ≤ λ0

2i+2μ
‖ri+1‖Gp .

From Remark 1 and Proposition 1, we have

‖ri+1‖2
L2 ≤ λ0CΩ

2i+3μ2

which implies

‖ri+1‖L2 → 0 as i → ∞.
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Since rk+1 = f − ∑k
i=−1(ui+1 + vi+1), we have

∥∥∥∥∥f −
k∑

i=−1

(ui+1 + vi+1)

∥∥∥∥∥
L2

= ‖rk+1‖L2 → 0, as k → ∞.

For the second assertion, we begin by squaring the basic
refinement step,

ri = ui+1 + vi+1 + ri+1

⇒ ri = ri+1 + (ui+1 + vi+1), i = −1,0,1, . . . .

Then, we can obtain

‖ri‖2
L2 = ‖ri+1‖2

L2 +‖ui+1 +vi+1‖2
L2 +2〈ri+1, ui+1 +vi+1〉.

(27)

Because (ui+1, vi+1) is a solution of (5), by Proposition 1,
(27) can be written as

‖ri‖2
L2 − ‖ri+1‖2

L2 − ‖ui+1 + vi+1‖2
L2

= 2〈ri+1, ui+1 + vi+1〉
= 1

μ

(|ui+1|BV + λ0/2i+1‖vi+1‖Gp

)
. (28)

Since

k∑
i=−1

(‖ri‖2
L2 − ‖ri+1‖2

L2 − ‖ui+1 + vi+1‖2
L2

)

=
k∑

i=−1

(‖ri‖2
L2 − ‖ri+1‖2

L2

) −
k∑

i=−1

‖ui+1 + vi+1‖2
L2

= ‖r−1‖2
L2 − ‖rk+1‖2

L2 −
k∑

i=−1

‖ui+1 + vi+1‖2
L2

= ‖f ‖2
L2 − ‖rk+1‖2

L2 −
k∑

i=−1

‖ui+1 + vi+1‖2
L2 .

Summing up (28), we have

‖f ‖2
L2 = ‖rk+1‖2

L2 +
k∑

i=−1

‖ui+1 + vi+1‖2
L2

+ 1

μ

k∑
i=−1

(|ui+1|BV + λ0/2i+1‖vi+1‖Gp

)
.

Because limk→∞ ‖rk+1‖L2 → 0, we have

‖f ‖2
L2 =

∞∑
i=−1

‖ui+1 + vi+1‖2
L2

+ 1

μ

∞∑
i=−1

(|ui+1|BV + λ0/2i+1‖vi+1‖Gp

)
.

�

The last equation can be seen as the quadratic L2-energy
decomposition of f in our hierarchical decomposition given
by (4). We refer the reader to Tadmor, Nezzar and Vese [48]
for a similar one to hierarchical (BV,L2) decomposition.
Further, the multiscale nature of hierarchical texture extrac-
tion can be quantified in term of this energy decomposition.

5 Numerical Implementation

Because of v ∈ Gp , taking v = div(g1, g2), we obtain an
equivalent formulation of (5) in terms of u,g1 and g2:

inf
u,g1,g2

{
|u|BV + μ‖rk − u − ∂xg1 − ∂yg2‖2

L2

+ λ0/2k+1
∥∥∥
√

g2
1 + g2

2

∥∥∥
Lp

}
,

k = −1,0,1, . . . . (29)

Note that in order not to cause the confusion of subscripts
in what follows, the i in (5) is replaced by k in (29). Simi-
larly, computing the minimizer of problem (29) amounts to
solve the two following minimization problems:

• Fixed (g1, g2), find the solution u of:

inf
u

{|u|BV + μ‖rk − u − ∂xg1 − ∂yg2‖2
L2

}
. (30)

• Fixed u, find the solution (g1, g2) of

inf
g1,g2

{
μ‖rk − u − ∂xg1 − ∂yg2‖2

L2

+ λ0/2k+1
∥∥∥
√

g2
1 + g2

2

∥∥∥
Lp

}
. (31)

Minimization problem (30) is actually ROF model. We
here adopt the projection algorithm in the dual framework
proposed by Chambolle [12] to solve it. By Remark 2, the
solution uk+1 can be written as

uk+1 = rk − ∂xg1 − ∂yg2 − PK ′
μ
(rk − ∂xg1 − ∂yg2),

where PK ′
μ
(rk −∂xg1 −∂yg2) is the orthogonal projection of

rk − ∂xg1 − ∂yg2 on the closed convex set K ′
μ = {r|‖r‖G ≤

1/(2μ)}. In the discrete setting, the computation of the non-
linear projection PK ′

μ
(rk − ∂xg1 − ∂yg2) amounts to solve

the following constrained minimization problem with in-
equality constraints:

min
ξ

{∥∥div(ξ) − 2μ(rk − ∂xg1 − ∂yg2)
∥∥2

L2,

|ξi,j | ≤ 1, i = 1, . . . ,M; i = 1, . . . ,N
}
, (32)
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where M × N indicate the size of image and |ξi,j | =√
(ξ1

i,j )
2 + (ξ2

i,j )
2. The Euler-Lagrange equation of (32) is

−∇(
div(ξ) − 2μ(rk − ∂xg1 − ∂yg2)

)
i,j

+ ai,j ξi,j = 0 (33)

where the ai,j ’s are the Lagrange multipliers associated
to each constrain in problem (32). By the complementary
slackness condition, we have either ai,j > 0 and |ξi,j | = 1,
or |ξi,j | < 1 and ai,j = 0. In the latter case we also have
∇(div(ξ)−2μ(rk − ∂xg1 − ∂yg2))i,j = 0. So, in either case,
the Lagrange multipliers are

ai,j = ∣∣∇(
div(ξ) − 2μ(rk − ∂xg1 − ∂yg2)

)
i,j

∣∣.
Then, (33) can be solved by the following semi-implicit
fixed point iteration scheme:

ξn+1
i,j = ξn

i,j + τ
(∇(

div
(
ξn

) − 2μ(rk − ∂xg1 − ∂yg2)
))

i,j

− τan
i,j ξ

n+1
i,j .

Solving ξn+1
i,j in the last equation, we obtain the final itera-

tion scheme:

ξ0 = 0,

ξn+1
i,j = ξn

i,j + τ(∇(div(ξn) − 2μ(rk − ∂xg1 − ∂yg2)))i,j

1 + τ |∇(div(ξn) − 2μ(rk − ∂xg1 − ∂yg2))i,j | .

(34)

Here, the discrete version of the partial derivative predator
(∂xg)i,j and (∂yg)i,j are defined as

(∂xg)i,j =
{

gi,j+1 − gi,j if j < N,

0 if j = N
and

(∂yg)i,j =
{

gi+1,j − gi,j if i < M,

0 if i = M.

(35)

The discrete version of the gradient predator (∇u)i,j =
((∂xu)i,j , (∂yu)i,j ) is defined as

(∂xu)i,j =
{

ui,j+1 − ui,j if j < N,

0 if j = N
and

(∂yu)i,j =
{

ui+1,j − ui,j if i < M,

0 if i = M.

(36)

And the discrete version of the divergence predator
(div(ξ1, ξ2))i,j is given by

(
div

(
ξ1, ξ2))

i,j
=

⎧⎪⎨
⎪⎩

ξ1
i,j − ξ1

i,j−1 if 1 < j < N,

ξ1
i,j if j = 1,

−ξ1
i,j−1 if j = N

+

⎧⎪⎨
⎪⎩

ξ2
i,j − ξ2

i−1,j if 1 < i < M,

ξ2
i,j if i = 1,

−ξ2
i−1,j if i = M.

(37)

In [12], a sufficient condition was introduced to ensure the
convergence of the iterative formula (34). This sufficient
condition shows that as long as τ ≤ 1/8, then 1

2μ
div(ξn) →

PK ′
μ
(rk − ∂xg1 − ∂yg2) as n → +∞.

Minimizing (31) with respect to g1 and g2 yields the fol-
lowing coupled Euler-Lagrange equations:

λ0/2k+1
(∥∥∥

√
g2

1 + g2
2

∥∥∥
Lp

)1−p(√
g2

1 + g2
2

)p−2
g1

= 2μ∂x(u − rk + ∂xg1 + ∂yg2), (38)

λ0/2k+1
(∥∥∥

√
g2

1 + g2
2

∥∥∥
Lp

)1−p(√
g2

1 + g2
2

)p−2
g2

= 2μ∂y(u − rk + ∂xg1 + ∂yg2). (39)

If the exterior normal to the boundary ∂Ω is denoted by
(nx, ny), then the associated boundary conditions for g1 and
g2 are:

(rk − u − ∂xg1 − ∂yg2)nx = 0;
(rk − u − ∂xg1 − ∂yg2)ny = 0.

(40)

We use the alternating algorithm to solve the coupled equa-
tions (38)–(39) with the boundary conditions (40). In the
discrete setting, for each equation, we use semi-implicit
fixed point iteration scheme [51]. To simplify the presen-
tation, we introduce the notation

H(g1, g2) =
(∥∥∥

√
g2

1 + g2
2

∥∥∥
Lp

)1−p(√
g2

1 + g2
2

)p−2
.

The alternating algorithm is presented as follows:

• Fixed g2, update the value of g1 by

λ0/2k+1Hn
i,j g

n+1
1,i,j

= 2μ
((

∂x(u − rk)
)n

i,j
+ gn

1,i,j+1

− 2gn+1
1,i,j + gn

1,i,j−1 + (
∂2
xyg2

)n

i,j

)
. (41)

• Fixed g1, update the value of g2 by

λ0/2k+1Hn
i,j g

n+1
2,i,j

= 2μ
((

∂y(u − rk)
)n

i,j
+ gn

2,i+1,j

− 2gn+1
2,i,j + gn

2,i−1,j + (
∂2
xyg1

)n

i,j

)
. (42)
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Here Hn
i,j = H(gn

1,i,j , g
n
2,i,j ), (∂x ·)i,j and (∂y ·)i,j is defined

by (35) and the discrete version of the mixed second partial
derivative predator (∂2

xyg)i,j is given by

(
∂2
xyg

)
i,j

=

⎧⎪⎨
⎪⎩

0 if i = 1,M, j = 1,N,
1
4 (gi+1,j+1 + gi−1,j−1 + gi+1,j−1 − gi−1,j+1)

if 1 < i < M, 1 < j < N.

Solving (41)–(42) for gn+1
1,i,j and gn+1

2,i,j , respectively, we have

gn+1
1,i,j = 2μ

λ0/2k+1Hn
i,j + 4μ

× ((
∂x(u − rk)

)n

i,j
+ gn

1,i,j+1

+ gn
1,i,j−1 + (

∂2
xyg2

)n

i,j

)
,

gn+1
2,i,j = 2μ

λ0/2k+1Hn
i,j + 4μ

× ((
∂y(u − rk)

)n

i,j
+ gn

2,i+1,j

+ gn
2,i−1,j + (

∂2
xyg1

)n

i,j

)
.

In practice, we always use the most recent values to compute
the values of function at each point during iteration process.

The principal steps of the algorithm for the proposed
model can be formulated as follows:

1. Initialize u0 = g0
1 = g0

2 = 0 and n = 0.
2. Compute ξ :

(1) Initialize ξ0 = 0 and n = 0.
(2) Compute ξn+1 by

ξn+1
i,j = ξn

i,j + τ(∇(div(ξn) − 2μ(rk − ∂xg
n
1 − ∂yg

n
2 )))i,j

1 + τ |∇(div(ξn) − 2μ(rk − ∂xg
n
1 − ∂yg

n
2 ))i,j | .

(3) Check whether |div(ξn+1
i,j ) − div(ξn

i,j )| ≤ ε holds. If
not, set n = n + 1 and go to step (2).

3. Compute un+1 by

un+1
i,j = rk,i,j − (∂xg1)

n
i,j − (∂yg2)

n
i,j − 1

2μ
div

(
ξn+1
i,j

)
.

4. Compute gn+1
1 by

gn+1
1,i,j = 2μ

λ0/2k+1H(gn
1,i,j , g

n
2,i,j ) + 4μ

× ((
∂x(u − rk)

)n+1
i,j

+ gn
1,i,j+1

+ gn
1,i,j−1 + (

∂2
xyg2

)n

i,j

)
.

5. Compute gn+1
2 by

gn+1
2,i,j = 2μ

λ0/2k+1H(gn+1
1,i,j , g

n
2,i,j ) + 4μ

× ((
∂y(u − rk)

)n+1
i,j

+ gn
2,i+1,j

+ gn
2,i−1,j + (

∂2
xyg1

)n+1
i,j

)
.

6. Check whether max{|un+1 − un|, |div(gn+1
1 , gn+1

2 ) −
div(gn

1 , gn
2 )|} ≤ ε holds. If not, set n = n+ 1 and go back

to step 2.

6 Applications to Multiscale Texture Extraction

In this section, we apply the hierarchical (BV,Gp,L2) de-
composition presented in (4) to achieve a multiscale texture
extraction. From (4), the multiscale texture representation of
f can be presented as

k∑
i=0

vi = f −
k∑

i=0

ui − rk.

The construction of this multiscale texture extraction is in-
dependent of the priori parameter λ0. And the partial sum,∑k

i=0 vi can provide a multi-layered description of tex-
ture which lies in an intermediate scale space between Gp

and L2. This multi-layered texture extraction can capture
texture in the deferent scales. As k increases, the vk’s will
successively resolve textures with decreasing the value of
the scale parameter λ0/2k+1. In addition, we note in pass-
ing that, as usual, coarser and finer extractions are avail-
able by using different ladders of scales, e.g., λ0/s

k+1 with
1 < s < 2 (respectively s > 2) leading to a finer (respec-
tively coarser) texture extraction.

In what follows, synthetic textured images as well as real
ones are used to test and validate the proposed approach for
multiscale texture extraction. In all numerical experiments
shown below, we choose the parameters as following: μ =
0.005, λ0 = 2 (initial scale parameter), τ = 0.05. We have
tested our model with different values of p and found results
similar, while the case of p = 1 yields faster calculations per
iteration, which is identical with the conclusion in [51, 52].
Thus, similar to the selection of p in [51, 52], we set p = 1
in the following experiments.

Figure 2 shows the results of multiscale texture ex-
traction of a synthetic image for 7 steps. The first image
shows the test data f and the next seven images show the
‘textures+100’ (plus a constant for illustration purposes) of
f at different scales. We can clearly see that at first only
coarsest texture has been extracted, while more and more
smooth textures are extracted with the increase of the itera-
tion times. The last plots show the Gp-energy of vi and the
L2-energy of ri , respectively.
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Fig. 2 Multiscale texture
extraction of a synthetic image
for 7 steps, and the two plots
show the Gp-energy of texture
vi and the L2-energy of residual
ri , respectively

Fig. 3 Multiscale texture
extraction of a synthetic image
for 7 steps

Figure 3 shows the results of multiscale texture extraction

of another synthetic image for 7 steps. We get similar results

and conclusions with the first experiment.

Figure 4 shows the results of multiscale texture extraction

of a leopard image for 7 steps. The Gp-energy of vi and the

L2-energy of residual ri are also plotted in this figure.

Figure 5 shows the results of multiscale texture extraction
of a fingerprint image for 7 steps.

7 Conclusions

In this paper, we present a new multiscale texture extraction
method which is distinct from all previous models of mul-
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Fig. 4 Multiscale texture
extraction of a leopard image
for 7 steps, and the two plots
show the Gp-energy of vi and
the L2-energy of residual ri ,
respectively

Fig. 5 Multiscale texture
extraction of a fingerprint image
for 7 steps

tiscale texture representation. Our method may have some

limitations compared with the other classical models such

as Gabor filter and wavelet transform, because we only take

into account the scales of texture, and ignore some other

information such as direction and structure of texture. But

we are the first one to represent the multiscale texture in
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the variational framework. In the future, we will extend this
method by taking into account more texture information.
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